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Error Principle
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The problem of characterizing the accuracy of and disturbance caused by a joint
measurement of position and momentum is investigated. In a previous paper the
problem was discussed in the context of the unbiased measurements considered
by Arthurs and Kelly. It is now shown that suitably modified versions of these
results hold for a much larger class of simultaneous measurements. The approach
is a development of that adopted by Braginsky and Khalili in the case of a
single measurement of position only. A distinction is made between the errors
of retrodiction and the errors of prediction. Two error±error relationships and
four error±disturbance relationships are derived, supplementing the uncertainty
principle usually so-called. In the general case it is necessary to take into account
the range of the measuring apparatus. Both the ideal case of an instrument having
infinite range and the case of a real instrument for which the range is finite
are discussed.

1. INTRODUCTION

In Appleby (1998a) we derived a number of inequalities relating the

accuracy of and disturbance caused by a simultaneous measurement of posi-

tion and momentum. However, our discussion was limited to the special case

of unbiased measurement processes, for which the systematic errors are zero.
Our purpose in the following is to generalize the results we obtained earlier

and show that analogous relations can be derived for a very much larger

class of measurement processes.

Heisenberg’ s (1927, 1930) formulation of the uncertainty principle was

one of the key steps in the development of quantum mechanics. Nevertheless,

over 70 years after the publication of his original paper, there remain a
number of obscurities regarding its interpretation (Hilgevoord and Uffink,
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1990). In contemporary discussions the uncertainty principle is usually identi-

fied with the statement

D x D p $
"
2

(1)

where D x, D p are the standard deviations

D x 5 ( ^ c | xÃ2 | c & 2 ^ c | xÃ| c & 2)1/2

(2)
D p 5 ( ^ c | pÃ2 | c & 2 ^ c | pÃ| c & 2)1/2

In his original paper Heisenberg suggested that the quantities D x, D p appearing

in (1) may be interpreted as experimental errors, and that the uncertainty

principle represents a fundamental constraint on the accuracy achievable in
a simultaneous measurement of position and momentum. At least, that is what

he has often been taken to have suggested (Heisenberg’ s own phraseology is

somewhat ambiguous). In the words of Bohm (1951), ª If a measurement of

position is made with accuracy D x, and if a measurement of momentum is

made simultaneously with accuracy D p, then the product of the two errors
can never be smaller than a number of order " .º

Is this is a legitimate interpretation of (1)? The question has been dis-

cussed by Ballentine (1970), PrugovecÏ ki (1973, 1984), Busch (1985), WoÂdkie-

wicz (1987), Hilgevoord and Uffink (1990), Raymer (1994), de Muynck et
al. (1994), and Busch et al. (1995). The consensus seems to be that the

quantities D x, D p defined in (2) cannot be regarded as experimental errors
because they are intrinsic properties of the isolated system. An experimental

error, by contrast, should depend, not only on the state of the system, but

also on the state of the apparatus and the nature of the measurement interaction.

Hilgevoord and Uffink (1990) have further remarked that in Heisenberg’ s

microscope argument it is only the position of the particle which is measured.

Although it is true that Heisenberg alludes to the possibility of performing
simultaneous measurements of position and momentum, such measurements

form no part of his actual argument.

It follows from all this that the statement of Bohm’ s just quoted cannot

be identified with the uncertainty principle usually so-called. Rather, it repre-

sents (if true) an independent physical principle: the error principle, as it
might be called.

The problem we now face is that although the error principle as stated

by Bohm is intuitively quite plausible, it cannot be regarded as rigorously

established. In order to establish it two things are necessary. In the first place,

we need to define precisely what is meant by the accuracy of a simultaneous
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measurement process. In the second place, we need to derive a bound on the

accuracy, starting from the fundamental principles of quantum mechanics.

The problem is of some interest, in view of the importance that simultaneous
measurements now have in the field of quantum optics (Arthurs and Kelly,

1965; Arthurs and Goodman, 1988; Braunstein et al., 1991; Stenholm, 1992;

Leonhardt and Paul, 1993a,b, 1995b; ToÈ rma et al., 1995; Busch et al., 1995;

Power et al., 1997; Leonhardt, 1997).

An approach to the problem which has attracted a good deal of attention

over the years is the one based on positive-operator-valued measures and the
concept of a ª unsharpº observable (PrugovecÏ ki, 1973, 1976a,b, 1978, 1984;

Davies, 1976; Holevo, 1982; Busch, 1985; Busch and Lahti, 1989; Martens

and de Muynck, 1990a,b, 1992; deMuynck et al., 1994; Ban, 1997). For a

recent review see Busch et al. (1995). This approach has recently been

criticized by Uffink (1994).

In Appleby (1998a) we adopted a rather different approach. We began
with Braginsky and Khalili’ s (1992) analysis of single measurements of

x or p by themselves and extended it to a class of simultaneous measurement

processes, namely, the class of unbiased measurement processes, for which

the systematic errors are all zero. Our analysis depended on making a

distinction between the retrodictive and predictive (or determinative and
preparative) aspects of a measurement (Margenau, 1958; PrugovecÏ ki, 1973,

1976; Hilgevoord and Uffink, 1990; Busch and Lahti, 1989). We accordingly

defined two different kinds of error: the errors of retrodiction, D eix and

D eip, describing the accuracy with which the result of the measurement

reflects the initial state of the system; and the errors of prediction, D efx
and D efp, describing the accuracy with which the result of the measurement
reflects the final state of the system. Corresponding to these two kinds

of error we derived two inequalities: a retrodictive error relationship

D eix D eip $
"
2

(3)

and a predictive error relationship

D efx D efp $
"
2

(4)

Relations (3) and (4) jointly comprise a precise statement of the semiintuitive
error principle discussed above.

Following Braginsky and Khalili, we also defined two quantities D dx,

D d p describing the disturbance of the system by the measurement, and we

derived the four error±disturbance relationships
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D eix D d p $
"
2

, D ef x D d p $
"
2

(5)

D ei p D d x $
"
2

, D ef p D d x $
"
2

These relationships provide a precise statement of the principle that a decrease

in the error of the measurement of one observable can only be achieved at

the cost of a corresponding increase in the disturbance of the canonically
conjugate observable.

The relationships above, together with (1), comprise a total of seven

inequalities, all of which are needed if one wants to capture the full intuitive

content of Heisenberg’ s (1927) original paper.

Arthurs and Kelly (1965) have shown that in the case of a retrodictively

unbiased joint measurement process (i.e., a process for which the final state
expectation values of the pointer positions coincide with the initial state

expectation values of the position and momentum), one has

D m X D m P $ " (6)

where the quantities on the right-hand side are the final state uncertainties

for the pointer positions m X and m P (also see Arthurs and Goodman, 1988;

WoÂdkiewicz, 1987; Raymer, 1994; Leonhardt and Paul, 1995a). In Appleby

(1998a) we showed that the Arthurs±Kelly relationship can be deduced from
the retrodictive error relationship.

The arguments given in Appleby (1998a) only serve to establish the

above inequalities for a limited class of measurement processes. That is, we

only proved (3) on the assumption that the measurement is retrodictively

unbiased, and (5) on the still more restrictive assumption that the measurement

is both retrodictively and predictively unbiased. Our purpose in the following
is to show that with a suitable modification of the definitions, these relation-

ships continue to hold for a very much larger class of measurement processes.

2. SIMULTANEOUS MEASUREMENT PROCESSES

We begin by characterizing the class of measurement processes which

we are going to discuss.
Consider a system with state space *sy interacting with an apparatus

with state space *ap. The system is assumed to have one degree of freedom,

with position xÃand momentum pÃsatisfying the commutation relationship

[xÃ, pÃ] 5 i " (7)

The apparatus is assumed to be characterized by two pointer observables m ÃX
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(measuring the position of the system) and m ÃP (measuring the momentum of

the system), together with n other observables yÃ1, yÃ2, . . . , yÃn. These n 1 2

operators constitute a complete set of commuting observables describing the
state of the apparatus. They also commute with the system observables xÃ, pÃ.

It is assumed that the system 1 apparatus is initially in a product state

of the form | c ^ f ap & , where | c & P *sy is the initial state of the system and

| f ap & P *ap is the initial state of the apparatus. The unitary evolution operator

describing the measurement interaction will be denoted UÃ. The final state of

the system 1 apparatus is UÃ| c ^ f ap & . The probability distribution of the
measured values is

r ( m X, m P) 5 dx dy1 . . . dyn | ^ x, m X, m P, y1, . . ., yn | UÃ| c ^ f ap & | 2

In Appleby (1998a) we assumed that the measurement process was

unbiased, so that

^ c ^ f ap | UÃ² m ÃX UÃ| c ^ f ap & 5 ^ c ^ f ap | UÃ² xÃUÃ| c ^ f ap & 5 ^ c ^ f ap | xÃ| c ^ f ap &

and

^ c ^ f ap | UÃ² m ÃPUÃ| c ^ f ap & 5 ^ c ^ f ap | UÃ² pÃUÃ| c ^ f ap & 5 ^ c ^ f ap | pÃ| c ^ f ap &

We make no such assumption here.

It may also be worth noting that we do not assume the existence of

momenta canonically conjugate to the pointer observables (as is the case in

the Arthurs±Kelly process, for example [Arthurs and Kelly, 1965; Busch,

1985; Braunstein et al., 1991; Stenholm, 1992; Power et al., 1997; Leonhardt,

1997; Appleby, 1998a,b]). In particular, we make no assumptions regarding
the spectra of the pointer observables.

3. DEFINITION OF THE ERRORS AND DISTURBANCES

Let 2 be any of the SchroÈ dinger-picture operators xÃ, pÃ, m ÃX, m ÃP. Let

2i 5 2 be the corresponding Heisenberg-picture operator at the instant the

measurement interaction begins, and let 2f 5 UÃ² 2UÃbe the Heisenberg-
picture operator at the instant the interaction finishes. Define the retrodictive

error operators

e ÃXi 5 m ÃXf 2 xÃi, e ÃPi 5 m ÃPf 2 pÃi (8)

the predictive error operators

e ÃXf 5 m ÃXf 2 xÃf, e ÃPf 5 m ÃPf 2 pÃf (9)

and the disturbance operators
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d ÃX 5 xÃf 2 xÃi, d ÃP 5 pÃf 2 pÃi (10)

Let 6 be the unit sphere in the system state space *sy. We then define the

maximal rms errors of retrodiction

D ei x 5 sup
| c & P 6

( ^ c ^ f ap | e Ã2
Xi | c ^ f ap & )1/2

(11)
D ei p 5 sup

| c & P 6
( ^ c ^ f ap | e Ã2

Pi | c ^ f ap & )1/2

the maximal rms errors of prediction

D ef x 5 sup
| c & P 6

( ^ c ^ f ap | e Ã2
Xf | c ^ f ap & )1/2

(12)
D ef p 5 sup

| c & P 6
( ^ c ^ f ap | e Ã2

Pf | c ^ f ap & )1/2

and the maximal rms disturbances

D d x 5 sup
| c & P 6

( ^ c ^ f ap | d Ã2
X | c ^ f ap & )1/2

(13)
D d p 5 sup

| c & P 6
( ^ c ^ f ap | d Ã2

P | c ^ f ap & )1/2

We discussed the physical interpretation of these quantities in Appleby
(1998a). The reader may confirm that this interpretation continues to be valid

in the present, more general context.

It should be noted that in these definitions the supremum is only taken

over all normalized initial system states. The initial apparatus state is held

fixed. The quantities D ei x, D ei p, D ef x, D ef p, D d x, D d p are therefore functions
of the initial apparatus state.

It should also be noted that the definitions just given differ slightly from

those in Appleby (1998a), in that we did not previously take the supremum

over all initial system states. Some such change in the definitions is essential

if the error±error and error±disturbance relationships proved in in our earlier

paper for the special case of unbiased measurement processes are to be
generalized so as to apply to the larger class of processes considered here.

As we show in the Appendix, if one drops the requirement that the measure-

ment be unbiased, then it is possible to find processes such that, with a

suitable choice of initial state | c & ,

^ c ^ f ap | e Ã2
Xi | c ^ f ap & ^ c ^ f ap | e Ã2

Pi | c ^ f ap & 5 0

It is only when one takes the supremum over all states | c & that one gets the

inequalities (21) and (22) below.

As discussed in Appleby (1998a), the quantity ( ^ c ^ f ap | e Ã2
Xi | c ^

f ap & )1/2 represents the rms retrodictive error in the measurement of x when
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the system is initially in the state | c & . The quantity D ei x (as defined above)

consequently represents the maximum rms error obtained when the system

is allowed to range over every possible initial state. Similarly with the quanti-
ties D eip, D ef x, D ef p, D d x, D d p.

It is easy to think of measurement interactions for which the errors and

disturbances defined in (11)±(13) are finite (with an appropriate choice of

initial apparatus state). An example of such a process is the Arthurs±Kelly

process (Arthurs and Kelly, 1965; Busch, 1985; Braunstein et al., 1991;

Stenholm, 1992; Power et al., 1997; Leonhardt, 1997; Appleby, 1998a,b). In
the case of the Arthurs±Kelly process, ^ c ^ f ap | 22 | c ^ f ap & , with 2 any

error or disturbance operator, is independent of the state | c & , which means

that in the particular case of the Arthurs±Kelly process the definition of D eix,

D ei p, D ef x, D ef p, D d x, D d p which are employed in this paper coincide with

the definitions used in Appleby (1998a,b). It should be observed, however, that

interactions for which this is true are somewhat idealized. A real measuring
instrument will have a finite range. If the initial system state expectation

values ^ c | xÃi | c & and ^ c | pÃi | c & are a long way outside the range of the instrument,

then the errors and disturbances may not be small. Consequently, in the case

of a real measuring instrument, the quantities defined in (11)±(13) may well

be infinite, or at least very large. To put it another way, in the case of a real
measuring instrument, these quantities do not correspond very closely to

one’ s intuitive idea of the accuracy of and disturbance caused by a realistic

measurement process. In Section 7 we show how the definitions can be

modified so as to obviate this difficulty.

4. COMMUTATORS

We have, as an immediate consequence of the definitions,

[ e ÃXf, e ÃPf] 5 i " (14)

The other commutators between the error and disturbance operators give

more difficulty. This is because the retrodictive error and disturbance operators
mix Heisenberg-picture observables defined at different times. It turns out,

however, that it is possible to express every remaining commutator of interest

in terms of commutators between one of the operators e ÃXi, e ÃPi, e ÃXf, e ÃPf, d ÃX,

d ÃP and one of the operators xÃi, pÃi. The significance of this result is that xÃi, pÃi
generate translations in the system phase space.

In fact

[ e ÃXi, e ÃPi] 5 [( m ÃXf 2 xÃi), ( m ÃPf 2 pÃi)]

5 i " 2 [xÃi, m ÃPf] 1 [pÃi, m ÃXf]
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5 i " 2 [xÃi, ( pÃi 1 e ÃPi)] 1 [pÃi, (xÃi 1 e ÃXi)]

5 2 i " 2 [xÃi, e ÃPi] 1 [pÃi, e ÃXi] (15)

Similarly

[ e ÃXi, d Ãp] 5 2 i " 2 [xÃi, d Ãp] 1 [pÃi, e ÃXi] (16)

[ d ÃX, e ÃPi] 5 2 i " 2 [xÃi, e ÃPi] 1 [pÃi, d ÃX]

and

[ e ÃXf, d Ãp] 5 2 i " 1 [pÃi, e ÃXf]

[ d ÃX, e ÃPf] 5 2 i " 2 [xÃi, e ÃPf] (17)

5. ERROR AND ERROR± DISTURBANCE RELATIONSHIPS

We have, as an immediate consequence of (14),

D efx D ef p $
"
2

(18)

For the remaining relationships we have to work a little harder. Let | c & be

any normalized state P *sy. Let

DÃxp 5 exp F i

"
( pxÃ2 xpÃ) G

be the system phase-space displacement operator, and define

| c xp & 5 DÃxp | c &

We have

i "
-
- x

DÃxp 5 1 pÃ2
1

2
p 2 DÃxp, 2 i "

-
- x

DÃ²xp 5 DÃ²xp 1 pÃ2
1

2
p 2

2 i "
-
- p

DÃxp 5 1 xÃ2
1

2
x 2 DÃxp, i "

-
- p

DÃ²xp 5 DÃ²xp 1 xÃ2
1

2
x 2

In view of equation (15) we then have

^ c xp ^ f ap | [ e ÃXi, e ÃPi] | c xp ^ f ap & 5 2 i " (1 1 = ? v) (19)
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where v is the vector

v 5 1 ^ c xp ^ f ap | e ÃXi | c xp ^ f ap &

^ c xp ^ f ap | e ÃPi | c xp ^ f ap & 2
and = is the phase space gradient operator

= 5 1 - / - x

- / - p 2
Now consider the box-shaped region 5 in phase space, with vertices at

(L /2, P /2), ( 2 L /2, P /2), ( 2 L /2, 2 P /2), (L /2, 2 P /2). Let # be its boundary.
We have

D ei x D ei p $
1

2LP # 5

dx dp | ^ c xp ^ f ap | [ e ÃXi, e ÃPi] | c xp ^ f ap & |

$
1

2LP Z # 5

dx dp ^ c xp ^ f ap | [ e ÃXi, e ÃPi] | c xp ^ f ap & Z
$

"
2 1 1 2

1

LP Z # 5

dx dp = ? v Z 2
5

"
2 1 1 2

1

LP Z # #

ds n ? v Z 2
$

"
2 1 1 2

2

L
D eix 2

2

P
D ei p 2 (20)

where ds is the line element and n is the outward-pointing unit normal along

#. Taking the limit as L, P ® ` , we deduce

D eix D ei p $
"
2

(21)

whenever the left-hand side is defined (i.e., whenever it is not of the form

0 3 ` ).

Starting from (16) and (17) we deduce, by essentially the same argument,

D ei x D d p $
"
2

, D ef x D d p $
"
2

(22)

D ei p D d x $
"
2

, D ef p D d x $
"
2

whenever the products are defined.
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It should be noted that although the relationships proved in this section

have the same form as the corresponding relationships proved in Appleby

(1998a), they do not have the same content, since the quantities D ei x, D ei p,
D ef x, D ef p, D d x, D d p appearing in them are not defined in the same way (in

our previous publications we did not take a supremum over all normalized

initial system states when defining the errors and disturbances; see Section

3 above, and Section 6 immediately following).

In the Introduction we remarked that in the case of the retrodictively

unbiased measurement processes considered in Appleby (1998a), the Arthurs±
Kelly relationship [relation (6) above] is a consequence of the retrodictive

error relationship. It is an interesting question, which we have not as yet

been able to resolve, whether it is possible to deduce an Arthurs±Kelly type

bound from (21), applying to the much more general class of measurement

processes considered in this paper.

6. UNBIASED MEASUREMENTS

Suppose that the measurement process is retrodictively unbiased, in the

sense that

^ c ^ f ap | e ÃXi | c ^ f ap & 5 ^ c ^ f ap | e ÃPi | c ^ f ap & 5 0

uniformly, for all | c & P *sy (but fixed | f ap & ). Then the vector v appearing

on the right-hand side of (19) is identically zero, and we have

^ c ^ f ap | e Ã2
Xi | c ^ f ap & ^ c ^ f ap | e Ã2

Pi | c ^ f ap & $
" 2

4

uniformly, for all | c & P *sy.

Suppose, in addition, that the measurement is predictively unbiased:

^ c ^ f ap | e ÃXf | c ^ f ap & 5 ^ c ^ f ap | e ÃPf | c ^ f ap & 5 0

for all | c & . Then we have, by a similar argument,

^ c ^ f ap | e Ã2
Xi | c ^ f ap & ^ c ^ f ap | d Ã2

P | c ^ f ap & $ " 2/4

^ c ^ f ap | e Ã2
Xf | c ^ f ap & ^ c ^ f ap | d Ã2

P | c ^ f ap & $ " 2/4

^ c ^ f ap | e Ã2
Pi | c ^ f ap & ^ c ^ f ap | d Ã2

X | c ^ f ap & $ " 2/4

^ c ^ f ap | e Ã2
Pf | c ^ f ap & ^ c ^ f ap | d Ã2

X | c ^ f ap & $ " 2/4

uniformly, for all | c & .
These are the results which we proved in Appleby (1998a) by a differ-

ent method.
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7. MEASUREMENTS WITH A FINITE RANGE

Real measuring instruments are only designed to be used for a limited

set of initial system states. For such an instrument one expects the maximal

rms errors and disturbances defined in (11)±(13) to be infinite, or at least

very large. This is because the supremum is taken over every possible initial

system state, including those states for which the expected values of xÃand

pÃare far outside the range of the instrument. It follows that the quantities

defined in (11)±(13) are poor indicators of the accuracies and disturbances

to be expected when the instrument is used in the manner in which it was

designed to be used. In the case of a real measuring instrument, what interests

us are the maximum errors and disturbances obtained for a limited class of

initial system statesÐ namely, the class on which the instrument was designed

to make measurements. In this section we discuss an alternative definition

of the errors and disturbances which is more appropriate to such a case.

Suppose that the instrument is designed to be accurate for initial system

states | c & such that

x0 2 1±2 L # ^ c | xÃ| c & # x0 1 1±2 L, p0 2 1±2 P # ^ c | pÃ| c & # p0 1 1±2 P

and

D x # s , D p # t

for fixed constants x0, p0, L, P, s , t such that s t $ " /2. Let 68 be the set

of normalized states e *sy which satisfy these conditions. The errors and

disturbances appropriate for the description of this instrument are obtained

by taking the supremum over all normalized states | c & e 68:

D 8eix 5 sup
| c & P 68

( ^ c ^ f ap | e Ã2
Xi | c ^ f ap & )1/2

(23)

D 8ei p 5 sup
| c & P 68

( ^ c ^ f ap | e Ã2
Pi | c ^ f ap & )1/2

D 8ef x 5 sup
| c & P 68

( ^ c ^ f ap | e Ã2
Xf | c ^ f ap & )1/2

(24)

D 8ef p 5 sup
| c & P 68

( ^ c ^ f ap | e Ã2
Pf | c ^ f ap & )1/2

D 8d x 5 sup
| c & P 68

( ^ c ^ f ap | d Ã2
X | c ^ f ap & )1/2

(25)

D 8d p 5 sup
| c & P 68

( ^ c ^ f ap | d Ã2
P | c ^ f ap & )1/2
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It follows from (14) that

D 8ef x D 8ef p $
"
2

Turning to the retrodictive error relationship, let | c & be any normalized state
P *sy such that

^ c | xÃ| c & 5 x0, ^ c | pÃ| c & 5 p0

and

D x # s , D p # t

Let 5 be the box-shaped region of phase space with vertices (x0 1 L /2, p0 1
P /2), (x0 2 L /2, p0 1 P /2), (x0 2 L /2, p0 2 P /2), (x0 1 L /2, p0 2 P /2).
Then | c xp & P 68 for all (x,p) P 5. We can now use an argument analogous

to the one leading to (20) to deduce

D 8ei x D 8ei p $
"
2 1 1 2

2

L
D 8ei x 2

2

P
D 8eiP 2

which can alternatively be written

1 D 8ei x 1
"
P 2 1 D 8ei p 1

"
L 2 $

"
2 1 1 1

2 "
LP 2 (26)

If P D 8eix, L D 8ei p, and LP are all À " , we have the approximate relation

D 8ei x D 8ei p *
"
2

One expects this approximate form of the retrodictive error relationship to

be valid in most situations of practical interest. However, it is not always

valid (see the Appendix for a counterexample).
Starting from (16) and (17), we can derive in a similar manner

1 D 8ei x 1
"
P 2 1 D 8d p 1

"
L 2 $

"
2 1 1 1

2 "
LP 2 (27)

1 D 8ei p 1
"
L 2 1 D 8d x 1

"
P 2 $

"
2 1 1 1

2 "
LP 2
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and

D 8ef x 1 D 8d p 1
"
L 2 $

"
2

(28)

D 8ef p 1 D 8d x 1
"
P 2 $

"
2

8. CONCLUDING REMARKS

The commonest method of describing the spread of a statistical distribu-

tion, in terms of the varianceÐ the method employed in this paper, in other

wordsÐ is subject to certain limitations. In recent years there has accordingly

been some interest in devising alternative approaches. One approach is that

involving parameter-based uncertainty relationships (Hilgevoord and Uffink,
1990; Braunstein et al., 1996). Another approach is that involving entropic

uncertainty relationships (Busch and Lahti, 1989; Martens and de Muynck,

1990a,b, 1992; Ban, 1997; Buz
Æ
ek et al., 1995a,b). It would be interesting to

see if either of these approaches can be used to develop the results obtained

in this paper.
We should also remark that in this paper we have made no use of the

mathematical theory based on the concept of a POVM and an unsharp observ-

able (Prugovec
Æ
ki, 1973, 1976a,b, 1978, 1984; Davies, 1976; Holevo, 1982;

Busch, 1985; Busch and Lahti, 1989; Martens and de Muynck, 1990a,b,

1992; de Muynck et al., 1994; Busch et al., 1995; Ban, 1997). There were

certain advantages in proceeding in this way. One advantage was that it
enabled us to circumvent the difficulties which have been identified by Uffink

(1994), as we discussed in Appleby (1998a). Also, we share the view of

Englert and WoÂdkiewicz (1995) that the underlying intrinsic observables

should be regarded as ª the heart of the matter.º One of the advantages of

the approach adopted here is that it places the emphasis on these intrinsic

observables, as opposed to (in the words of Englert and WoÂdkiewicz) a
ª mathematical representation of the statistical information gathered.º Never-

theless, the theory of POVM’s is clearly an important and very powerful way

of analyzing simultaneous measurement processes. We certainly do not mean

to set up the approach taken in this paper as an alternative to the approach

based on POVMs. We merely wish to stress the point made by Englert and

WoÂdkiewicz, that POVMs and unsharp observables should be regarded as
secondary mathematical constructs, rather than as fundamental physical con-

cepts which need to be posited from the outset. We hope to return to this

question in a future publication, in which we will show how the concept of

an unsharp observable naturally emerges from the approach taken in this paper.
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APPENDIX

The purpose of this appendix is to explain why we defined the errors

and disturbances by taking the supremum over every normalized initial system

state, as in (11)±(13), or a subset of them, as in (23)±(25). The reason is

that there exist processes such that (for example)

^ c ^ f ap | e Ã2
Xi | c ^ f ap & ^ c ^ f ap | e Ã2

Pi | c ^ f ap & 5 0

for certain choices of initial system state | c & and initial apparatus state

| f ap & . It is only when one takes the appropriate supremum that one gets the

inequalities (21) and (22) or (26)±(28).
Consider, for example, the measurement interaction described by the

evolution operator

UÃ5 exp F 2
i p
2 "

(xÃp ÃX 2 m ÃXpÃ) G
where p ÃX is a momentum canonically conjugate to the pointer observable

m ÃX. UÃis a rotation operator in xp m X p X space. It takes m ÃX onto xÃand xÃ

onto 2 m ÃX:

1 xÃf

m ÃXf 2 5 UÃ² 1 xÃ

m ÃX 2 UÃ5 1 cos
p
2

2 sin
p
2

sin
p
2

cos
p
2 2 1 xÃ

m ÃX 2 5 1 2 m ÃX

xÃ 2
Similarly

1 pÃf

p ÃXf 2 5 1 2 p ÃX

pÃ 2
m ÃP is unaffected by the interaction. Referring back to the definitions (8)±(10),
we deduce

e ÃXi 5 0, e ÃXf 5 m ÃX 1 xÃ, d ÃX 5 2 m ÃX 2 xÃ

e ÃPi 5 m ÃP 2 pÃ, e ÃPf 5 m ÃP 1 p ÃX, d ÃP 5 2 p ÃX 2 pÃ

Since m ÃXf 5 xÃi the process effects a perfectly accurate retrodiction of position,
and this is reflected in the fact that D eix 5 0. On the other hand, the momentum

pointer is unaffected by the interaction: m ÃPf 5 m ÃPi. This means that the process

is not really measuring the momentum at all. We accordingly find D ei p 5
` . If we use the alternative definition of (23), then we find
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D 8ei p $
P

2

which is again consistent with the fact, that so far as momentum is concerned,

the process hardly counts as a measurement. Nevertheless, from the fact that

^ c ^ f ap | e Ã2
Pi | c ^ f ap & 5 ( D m P)2 1 ( D p)2 1 ( ^ f ap | m ÃP | f ap & 2 ^ c | pÃ| c & )2

we see, that by appropriately choosing | c & and | f ap & , ^ e Ã2
Pi & can be made

arbitrarily small. Moreover, the product ^ e Ã2
Xi & ^ e Ã2

Pi & will be zero whenever

^ e Ã2
Pi & is finite.

It is not surprising that ^ e Ã2
Pi & is small for certain choices of initial state.

Consider, for example, the classical situation, where one has a classical

ammeter whose needle is stuck at the 1-A position. Then the meter will, of
course, give exactly the right reading if one uses it to measure a 1-A current.
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